Plato’s Error and a Mean Field Formula for Convex Mosaics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation error estimates for mean value coordinates over convex polygons

In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter on...

متن کامل

Naive Mean Field Approximation for the Error Correcting Code

Solving the error correcting code is an important goal with regard to communication theory. To reveal the error correcting code characteristics, several researchers have applied a statistical-mechanical approach to this problem. In our research, we have treated the error correcting code as a Bayes inference framework. Carrying out the inference in practice, we have applied the NMF (naive mean f...

متن کامل

Quantum mean-field decoding algorithm for error-correcting codes

We numerically examine a quantum version of TAP (Thouless-Anderson-Palmer)like mean-field algorithm for the problem of error-correcting codes. For a class of the so-called Sourlas error-correcting codes, we check the usefulness to retrieve the original bit-sequence (message) with a finite length. The decoding dynamics is derived explicitly and we evaluate the average-case performance through th...

متن کامل

A mean value formula for elliptic curves

It is proved in this paper that for any point on an elliptic curve, the mean value of x-coordinates of its n-division points is the same as its x-coordinate.

متن کامل

Convex vs non-convex estimators for regression and sparse estimation: the mean squared error properties of ARD and GLasso

We study a simple linear regression problem for grouped variables; we are interested in methods which jointly perform estimation and variable selection, that is, that automatically set to zero groups of variables in the regression vector. The Group Lasso (GLasso), a well known approach used to tackle this problem which is also a special case of Multiple Kernel Learning (MKL), boils down to solv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axiomathes

سال: 2019

ISSN: 1122-1151,1572-8390

DOI: 10.1007/s10516-019-09455-w